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The problem of designing composites with given sets of average characteristics [i, 2] 
which is of considerable practical interest, represents an inverse problem in the general 
case that is referred to synthesis problems according to a common classification [3]. It is 
also similar to optimal control problems for partial differential equations [4] and can be 
reduced to it for Searching for particular solutions (see [5]). Investigation of the design 
problem in the general case is constrained by the small number of theoretical results [5]. 

Meanwhile, the presence of explicit expressions for average characteristics for the 
classes of composites used extensively in practice (laminar and fibrous) and the results in 
[2, 6, 7] (in the part of local stress estimates) permits reducing the design problem to 
particular cases of integral equations of the first kind for which methods of solution will 
successfully be developed that are sufficiently effective for utilization in the solution 
of practical problems. 

I. DESIGN OF LAMINAR COMPOSITES WITH GIVEN AVERAGE CHARACTERISTICS 

Let a composite be formed by periodically alternating thin (thickness ~ << i) layers of 
homogeneous isotropic materials parallel to the Oxlx 2 plane. Then the average characteris- 
tics [I, 2, 8] of composites of laminar configuration (specific gravity p, pliability tensor 
Hijks thermal expansion coefficients ~ij, etc.) are expressed in terms of the local charac- 
teristics [specific gravity p(x3/~), Young's modulus E(x3/e), Poisson ratio v(x3/~), the 
coefficient of thermal expansion $(x3/e)] by formulas [i, 2, 9] 
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where <.> = ~ �9 dy @ ~- x3/e) is the average over a period of the composite structure. 
0 

We do not present all the formulas to evaluate the quantities designated, they are well 
known, a sufficiently complete listing can be found in [i0]. For our purposes it is just 
essential that (i.i) have the form 

/(~ + ~) (I - 2v) \ (~, ~j~, ~)  = F <~>, \ ~ - - ~  / . . . .  ) (1.2) 

(F is an algebraic function, and ... denotes independent integral functionals [besides those 
mentioned explicitly) in (i.i)]. 

PROBLEM OF DESIGNING A COMPOSITE OF ONE-DIMENSIONAL 
CONFIGURATION WITH A GIVEN SET OF AVERAGE CHARACTERISTICS 

This is formulated as follows: i. Is (1.2) solvable in the given class of functions? 
2. If it is solvable, indicate the set of its solutions. 
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Extraction of the solvability question is typical for incorrect problems to which the 
one we examine belongs. 

Remark i. The selection of the class of functions ~ is by starting from the existing 
composite production technology. For instance, the class of functions 

-(y) ~ L~([O, t]): all the } 
~ -----| integrands in (i,i) are defined 

corresponds to application of materials with any combinations of mechanical characteristics 
and any kinds (continuous, piecewise-continuous, etc.) of their distributions on the compo- 
site structure as components. The class of functions ~ is used for theoretical investiga- 
tions of the problem. We do not have such a class of materials available in practice. The 
class of functions 

, m 

~ d =  t for almost all y~[O, J] J 

corresponds to utilization of a finite number of materials m for creating a composite. This 
is the case most widespread in practice. 

Remark 2. All solutions of the problem (or at least as large a number of them as pos- 
sible) are required in formulating the synthesis problem. This condition is combined with 
engineering requirements since it is always desirable to have the greatest number of differ- 
ent designs of a composite with the necessary properties in order to select the most tech- 
nological ones. 

It is convenient to start from the following problem rather than directly from (1.2) 
for its solution. Let us replace the functionals <p>, ... in (1.2) by the variables Yz, ..-, 
In" We consequently obtain an algebraic system (the system S [I0]) in Yl ..... Yn (P, Hi~ks 

~ij are given). Let Y denote the set of solutions of the system S (its solution is not unzque 
in the general case). Afterwards (1.2) reduces to 

I 

(1.3) 
0 

where u(y) = (p(y), E(y), v(y), ~(y)) is the set of local characteristics in the period of 
the composite structure, the desired function. Integrands (under the symbol < >) in (i.i) 
are denoted by f(u). For laminar composites the functions f(u) are presented completely in 
[8]. 

Equation (1.3) in the class of functions ~ d of laminar composites goes over into 

(1.4) 

for {le} the volume content of components in the composite (I s is the vol_ume content of the 
~-th material in the composite). The notation y~ = f(u~) is used, where u~ = (p~, E~, v~, 
6e) is the set of mechanical characteristics of the ~-th material. 

DOMAIN OF POSSIBLE VALUES OF THE AVERAGE CHARACTERISTICS 

Both theoretically and practically, the question of what average characteristics can be 
ascribed, in principle, to laminar composites, is of interest. In particular, the assertion 
that properties different from the properties of the components can be adduced became com- 
monplace in application to composites. How can this be manifest in application to laminar 
composites? 

From the mathematical point of view, the solution of the formulated problem reduces to 
calculating the image of the set ql upon mapping (I.i). For the case o~ = {~(y)~ ~=: 
p(y), E(y), ~(y), 6(Y) > 0 for almost all y e [0, i]} (under the simplifying assumption about 
agreement between the Poisson ratios of the components) this problem is solved in [II] by op- 
timal control methods. 
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There results from the solution mentioned: a) Composites of the type under considera- 
tion can have the following average characteristics: p = X (X > 0); the average Young's 
moduli El, the Poisson ratios ~ij, and the shear moduli Gij: 

~ = ~ = x,  E~  /1 - , )  x 
(1 + v) (1 --2v) x y  + 2 v  2 ' 

v l ~ =  ~,', v ~ = ' v 2 3 =  ( l  + v) (l  - -  2v) xy + 2* " z '  

2X G13 = G"3 = 2 . 
~r~ = V ~ '  " (1 + ~) y ' 

= {-c-~z--l_vx 

(x > O, y > l/x, z > O, t > 0). The variables X, x, y, z, t in the domains mentioned for 
them take on independent values, b) Any average characteristics of composites with continu- 
ous, piecewise-continuous, etc., distributions of the local characteristics can be obtained 
as average characteristics of composites of laminar construction. 

Returning to the formula presented for ~33, it is easy to note that the domain of pos- 
sible values of ~33 is (-~, +=). This means that the coefficient of thermal expansion of 
the composite (formed from components with positive (!) coefficients of thermal expansion, 
see above) can be negative. Composites based on actually existing materials are mentioned 
in [ii], that possess this property. The remaining average characteristics do not allow 
examples of such impressive qualitative distinctions in the properties of the composite and 
its components (although quantitative distinctions can be quite significant). 

This case is interesting also in connection with the utilization of different, often 
simplified, models of composites. It should be noted that models of the level of the mixture 
rule are not able to perceive the effect presented above. 

As regards the assertion of Sec. b, it is useful in practice since it yields an answer 
to the question of whether continuous, etc., distributions of local characteristics can ad- 
duce any new properties to a composite as compared with the properties of traditional (high- 
ly technological in fabrication) laminar composites. As we see, all possible properties can 
be realized in the class of laminar composites. An analogous result also holds when taking 
account of the strength properties of materials. 

MATHEMATICAL METHODS OF SOLVING PROBLEMS (1.3), (1.4) 

It was noted above that utilization of the class of functions qZ~ is not adequate for 
situations that actually occur when only a certain limited set of materials can be used to 
create a composite. The class of functions 

V = {~(V) ~ ~ ~V) ~ V for almost a l I y  ~ [0, l l}, 

corresponds to this case that is most extensively encountered in practice, where V is com- 
pact in R n (n depends on the number of component characteristics in the formula for the aver- 
age characteristics). When the set V is formed by a finite set of points (V = {p~, E~, ~a, 
~}~=im), we have U =q/d. 

Proposition i. a) For m ~ n + 1 the image of the set U during the mapping of (1.3) is 
a convex hull of the set 

2 = ~ R ~ : x = / @ , u ~ V } .  

b) Any p o i n t  b e l o n g i n g  t o  t h e  image U d u r i n g  t h e  mapping o f  ( 1 . 3 )  can be o b t a i n e d  as 
t h e  v a l u e  o f  ( 1 . 3 )  on a p i e c e w i s e - c o n s t a n t  f u n c t i o n  t a k i n g  on n o t  more t h a n  n + 1 d i f f e r e n t  
v a l u e s  ( i . e . ,  a g a i n  a l l  p o s s i b l e  a v e r a g e  c h a r a c t e r i s t i c s  a r e  r e a l i z e d  in  t h e  c l a s s  o f  l a m i n a r  
c o m p o s i t e s ) .  

Remark 3. When u s i n g  a f i n i t e  number o f  components  [ s e e  ( 1 . 4 ) ] ,  t h e  s e t  E i s  a f i n i t e  

s e t  o f  p o i n t s  Z = {ga}a=l  TM [ya  a r e  d e f i n e d  in  t h e  c l a r i f i c a t i o n  o f  ( 1 . 4 ) ]  w h i l e  cony  Z = 

c o n v { y a } a = l  m i s  a convex p o l y h e d r o n .  In  t h i s  c a s e  t h e  p rob lem o c c u r s  o f  convex  combfina t ions  
[ s e e  ( 1 . 4 ) ]  [ I 0 ,  12 ] :  1. Does t h i s  p o i n t  y be long  to  t h e  p o l y h e d r o n  cohvZ = conv{ya}a= l  m. 

2. I f  i t  b e l o n g s ,  i n d i c a t e  a l l  c o e f f i c i e n t s  o f  convex  c o m b i n a t i o n s  o f  p o i n t s  {ya}a=l  m y i e l d -  
ing  t h e  p o i n t  y .  
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Remark 4. We arrive at the same problem upon discretization of the problem (1.3) during 
its numerical solution, see [8]. 

Let us consider the nondegenerate simplexes {PI ..... PM} of the polyhedron {y~}~=1 m 

containing the point y. A single solution of the problem (1.4) [ii] corresponds to each 
simplex PD and the point y, and let us denote_ it by sN(y)~ Let us note that the number M 
of such simple solutions is finite. Let A(y) denote the set of all solutions of the problem 
(1.4). 

Proposition 2. 

A (g) = cony {~ (g)}~i~- 

L e t  us  d e f i n e  t h e  " r e s i d u a l "  b e t w e e n  t h e  two p o l y h e d r a  A, B c R n as  t h e  number  

(A, B ) =  max minl~-~l + max minl~-~l. (1.5) 
x~B\AyeA ~A\ByEB 

G e o m e t r i c a l l y  t h i s  q u a n t i t y  i s  o f  t h e  o r d e r  o f  t h e  " r e s i d u a l  t h i c k n e s s "  o f  t h e  p o l y -  
h e d r a  A and  B e q u a l  t o  (A\B)  U (B \A)  [ h e n c e  two c o m p o n e n t s  i n  ( 1 . 5 ) ] .  G i v i n g  t h e  f u n c t i o n  
( 1 . 5 )  i n  t h e  s e t  o f  p o l y h e d r a  i n  R n t r a n s f o r m s  i t  i n t o  a t o p o l o g i c a l  s p a c e ;  

Proposition 3. Let Yi + Y as i ~ ~, where {Yi, i § ~}, y �9 conv{y~}a=1 m. Then (A(Yi), 

as 

The proofs of Propositions 1 and 2 are presented in [12]. The proof of Proposition 3, 
assuring the possibility of discretization of the set Y for practical calculations, is of 
purely mathematical nature, in which connection it is not presented here. 

COROLLARY. The set of solutions of the problem of designing laminar composites with 
a given set of average characteristics is this: the ~-th material enters the composite in 
the volume content 

M 

= E (D, (1.6) 
11= 1 

M 

where {pO} are arbitrary numbers satisfying the condition DD -> 0; %xJ 9n = I (s~(g),  ~z - l . . . . .  n 

are coordinates of the simplicial solution s~(y)). 

TAKING ACCOUNT OF THE STRENGTH OF COMPONENTS FOR THE DESIGN 

To include the strength characteristics in the considerations, it is necessary to have 
an average criterion of the strength of a composite, a strength criterion in terms of the 
average stress or strains (stress and strain determinable from the solution of the problem 
of body deformation with average characteristics upon application of the same load as to the 
initial body are understood to be such). Such criteria can be obtained on the basis of us- 
ing the Cl-asymptotic of local stresses or strains expressed in terms of average quantities. 
There are no such asymptotics in the general case. For ordinary differential equations the 
C1-asymptotic of the averaging method is obtained in [7, 15] (in application to the problem 
under consideration): ~ ~ ~ijk~(Hijk~, ~ij, E(y))ok~- The specific form of the function 

{~ijk~} is presented in [i0, 16]. Let the strength criteria of the component materials be 
0 _< f(aijE , E) -< o(E), where aijg are the local stresses, E is used as a material indicator 

(when using a finite number of materials f~(oijg) <_ a a is the strength criterion of the ~-th 

material). Substituting the asymptotic aijE in the strength criterion (under the condition 

of boundedness of 8f/aaije) results in an average strength criterion (see [16, 17] for greater 
detail) 

,~/(qi;, E) --~-- max F (Hijk.z, ~ ,  E (g), (1~;) < I , 
yE[0,1] 

and in the case of materials of laminar configuration 
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ct~_E 
(1.7) 

(X is the set of numbers of materials actually in the composite). The functions F, {F~} are 
determined by the requisite average characteristics and the component characteristics (see 
examples in [!0, 16]). 

or 

DESIGN OF LAMINAR COMPOSITES WITH GIVEN 
DEFORMATION-STRENGTH CHARACTERISTICS 

Solve the problem (1.4) under the additional conditions 

M(oij, E) J i (the composite endures a given average load) 

M(oij, E) + min (the composite has the highest safety factor, the strongest composite). 

The methods of solving the problem formulated are exposed in detail in [16, 17]. 

MAXIMALLY STRONG AND EQUALLY STRONG DESIGNS 

Let us note that the results of [16] permit making the following deduction. Let (E*) = 
{X~*} be the design of the strongest composite in the above-mentioned sense, and (E) = {X~} 
the design of a certain equally strong composite (a composite for which the strength criteria 
of all the components are spoiled simultaneously). Then a strict inequality is realized, as 
a rule in the evident nonstrict inequality M(oij , E*) ! M(oij, E) for any equally strong de- 

sign for laminar composites. Thus, equally strong designs do not realize the greatest 
strength of a composite although the criterion (1.7) is the only rupture criterion "at the 
first crack" [spoilage of (1.7) generally implies rupture of just certain layers]. 

LAMINAR COMPOSITES OF MAXIMAL SPECIFIC STRENGTH 

The problem considered below, which is of practical interest, illustrates the "theoreti- 
cal" means for the occurrence of composites as piecewise-constant solution of the design 
problem in the absence of solutions in the form of a constant. An analogous fact was re- 
marked in application to another problem in [18]. 

Let an average stress toij ~ oij ~ = 0 for i or j = 3 be applied to a material (propor- 

tional loading in the plane of the layers). The asymptotic of the local stresses in this 

a E ~  0 
case is oij = ~ - ~ t o i j  in the layer occupied by the a-th material. Let the functions fa ~ 0 be 

homogeneous functions of the first degree. The average strength criterion 

max ~ [ E~ "~ o 

yields the following value of the parameter t for which rupture starts 

because of the homogeneity of the functions. The specific strength of the composite is t*/ 
p. Then the form 

<~> 
t~ = ~ max [~ (E=a?~) -->- rain. ( 1 . 8  ) 

can be adduced to the problem of maximizing the specific strength. Let us order the material 
data so that their corresponding numbers m s = f~(Eoij ~ would be arranged in increasing or- 

der. Then max ms = m~ outside the dependence of the real entrance of the ~-th (~ < K) 
~ =  1 , . . . ,K  

material in the composite. Consequently, the problem (1.8) is written as 
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<P> m K-+ rain = rain K. <f> 

for the set of materials with numbers ~ �9 {I ..... K}. The quantities (<E>, <p>) (see Re- 
mark 3) can take on values filling the polyhedron con~ {(E~, @~); ~ = 1 .... , K} independent- 
ly. Taking this into account nhe problem reduces to the following (for a given K): 

ylx--~-nain = minK; ( 1 . 9 )  

@, y) ~ RK = conv{(E~, mx9~); a = t . . . .  , K}: ( 1 . 1 0 )  

The problem (!.9), (i.i0) has a solution and min K equals the minimal angular coefficient of 
lines y = kx having a common point with the polyhedron R K. 

Remark 5. Because of the convexity of R K the line mentioned certainly passes through 
its apex. Therefore, the problem (1.9), (i.i0) possesses a solution of the form (x, y) = 
(E~, mKP~) or (<E>, <p>) = (E~, p$) which corresponds to a homogeneous material. 

Furthermore, selecting K e {i ..... m} (we denote it by K,) for which k has the minimal 
value, we solve the problem 

K ,  K ,  K ,  

E~X~=x ,  ~ p a ~ = y / m i n K , ,  ~ 0 ,  ~ ~ = t  
~ : I  ~ i  ~ : i  

to determine the volume contents of the components. 

COROLLARY. A material possessing the maximal specific strength among those fabricated 
on the base of m given homogeneous materials is one of these homogeneous materials. The 
corollary results from the Remark 4. 

Let the same problem of designing a maximal strength composite be supplemented by a 
constraint on the specific gravity <p> 5 P0. In this case we arrive at a problem of mini- 
mizing (1.9) under the condition 

(x, y) ~ Sx = RK N {U <~ mxPo}. 

The apices of the polyhedra S K may already not agree with points of the form (Ea, mKP a) 

COROLLARY. The problem under consideration with the constraint on the specific gravity 
cannot have a solution for a homogeneous material but always has a solution corresponding to 
a laminar composite. Utilization of many constraints occurring in practice results in ana- 
logous results. 

2. DESIGN OF COMPOSITES BASED ON HIGH MODULE FIBERS 

Let us examine composite materials formed by stacking layers of parallel fibers (the 
so-called "prepreg" technology [19]). Let us consider the layers parallel to the Oxlx 2 
plane (this does not diminish the generality), let ~= denote the angle between the fiber 
axes of the a-th layer and the Ox I axis. Then [2] the average stiffness characteristics 
{aijk~} in the Oxlx = plane (i, j, k, ~ = i, 2) and the local stresses oijg in the fibers are 

M 

0 ~ 1  

2 
8 ~ Gr oi~ Evi yj ~ ~ ~ = YhYl e~t ( 2 . 2 )  

h , l = l  

in the a-th fiber layer. 

The average thermal expansion coefficients are 

M 

The term 8E$u ~ is appended to the right side of (2.2) when taking account of thermal ex- 
pansion. 
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We use the notation: E, $ are Young's modulus and the thermal expansion coefficient 
of the fibers, s is the volume fiber content in the composite, 0 is the temperature, {yi ~} 
are the direction cosines of the fiber axes of the ~-th layer, M is the number of bonding 
families per period of the composite structure, %~ is the specific (referred to s) fiber 
content in the ~-th bonding layer. The average stresses oij and strains eij are defined as 
before. 

The local stress asymptotics in the binder cannot be obtained in explicit form, in con- 
trast to the preceding cases, since the problem of binder deformation by stiff fibers (of 
the type of the "stiff" problem [20]) must be solved for their determination, which is real- 
izable only numerically in practice. Meanwhile, by using explicit approximate solutions, 
estimates can be obtained for the local stresses in the binder and sufficient conditions for 
the binder strength on their basis. The analysis made in [21] for the strain of a soft bind- 
er clarified two characteristic kinds of its deformation: interlayer and interfiber. Upon 
going over to an average strength criterion, this results in the occurrence of a number of 
criteria, each of which corresponds to its own kind of binder rupture at the microlevel: 

Strength criterion in interfiber stresses 

m a x / I  (qD~, eij) ~< l ,  

Strength criterion in interlayer stresses 

m a x / 2  (~p~, q~=+l, e~j) ~< I .  
c tE~  

The method of constructing the functions fl and f2 is described in [17]. As regards the 
fiber strength criterion, it is obtained, as above, by substituting the asymptotic (2.2) 
into the strength condition for the fiber material 

m a x / b  (r eij) ~< 1 ( 2 . 4 )  

(E is the set of numbers of fiber layer stacking angles actually being utilized in the com- 
posite design). 

The substitution {eij } = {aijk~} -l {oij} permits writing the strength criterion in terms 

of the average stresses ({aijkE} are given by (2.1), in the thermoelastic case (2.3) must be 

taken into account). 

It should be kept in mind when writing the average strength criteria that TI = = cos~=, 
?~== sin ~,73 ~= 0. Consequently, all the sums in the right sides of (2.1) and (2.3) are ex- 
pressed in terms of four independent functionals 

M 3I  

5=1 ~ 1  

2,/ M 

R a ( + )  = • %= sin q~= cos a s R,  ( + )  ---- E ~= s ins  q)= cos s 

(2.5) 

where 

M 

~.~,~ O, ~ ~==I. 

The system S obtained by replacing BI( ~ ..... R~(~ in (2.1) by Yl, 

allJ 1 %2 2,, %11.2 an.,.o 
Yl = "~7-'s ' Y2 = "--~-'s ' Ya = "--ET's ' Y4 = Es 

"*'' Y4 

(2.6) 

is solved explicitly 

(2.7) 

[the solvability condition a~212 = a~1~ = (1/2) (Es - a~m - a~2~2 ) occurs here]. 
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Remark 6. The average thermal expansion coefficients are expressed in terms of the 

M M 

functionals Y1(~)= ~%~c~ = ~ k~sin2~ reducible to (2.5). Assignment of ~ij im- 

poses additional conditions of the solvability of the system S. 

Let us note that in the case under consideration the fiber stacking angles take on a 
finite number of values but neither their number M nor the angles themselves are fixed. In 
practice a constraint on the fiber stacking angles of the form 

( p ~  (I)a = [al, bl]  U -.- U [a~,b~] (2.8) 

Occurs. 

PROBLEM OF DESIGNING A FIBROUS COMPOSITE WITH GIVEN 
AVERAGE CHARACTERISTICS 

i. Are the equations 

R~(~) = y~, i =  t ,  2, 3, 4, 

s o l v a b l e  u n d e r  t h e  c o n d i t i o n s  ( 2 . 8 )  a n d  ( 2 . 5 ) ?  

2. If they are solvable, then indicate the set of solutions. 

( 2 . 9 )  

MATHEMATICAL METHODS OF SOLVING DESIGN PROBLEMS 

Application of the methods of [14] results in an analog to Proposition i. 

Proposition 4. a) For M ~ 5 the image of the set ~= {(q~s, xs): M } 

is the convex hull of the set 

F = { ~ - ~  B~: x I = cos4% x., = s~n~q~, 

x3 ~ s i a  q~ cos3q), x 4 =- siw~q9 cos % q) ~ (1)~}. 

b) Any point belon_ging to the image of the set ~ can be obtained as the value of the func- 
tions R~(~) ..... R4(~) for M = 5. 

COROLLARY. To obtain a fibrous composite of the type under consideration with any pos- 
sible sets of average stiffness characteristics {aijkZ} (and the thermal expansion {~ij}) it 
is sufficient to use not more than five families of bonding fibers. 

Remark 7. Symmetric fiber stackings {-b~s} characterized by the relationship ~s = 
,~M+1-s, ks ~ %M+I-~, a == i ..... M/2 (M even) are often used in practice. In this case R~(~) 
R~(~)------ 0 and the dimensionality of (2.9) is lowered to two [i = i, 2 in (2.9)]. The line 
F takes the form 

F =  { ~ R  2 : x 1 = c o s ~ % x 2 ~ s i n 4 % ~ } .  

Graphical methods clearly illustrating the solution technique utilized can be used to solve 
the problem. 

Let us examine the case when the possible stacking angles take on a finite number of 

values {~v}~-1. The problem (2.9) and (2.6) reduces to a problem about convex combinations 
(1.4) with 

Ys = (cos4~ ~, sinr ~, s in~Scos3~ ~, sin~(p s cos~  ~) 

(or Ya ~ (cos4~ ~, sin~ s) in the case of symmetric stackings). Correspondingly, for m ~ 5, Pro- 
positions 2 and 3 hold. 

We considered the volume fiber content s fixed above. Let us now consider the follow- 
ing problem. 
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o o,~# z q 

Fig. 1 

DESIGN OF A COMPOSITE WITH GIVEN ~ijkZ, ~ij WHEN USING 

A MINIMAL VOLUME OF FIBERS 

Solve the problem s § min while satisfying conditions (2.9), (2.6), and (2.8). 

The problem formulated is easily reduced to the preceding one. Let Y0 be a certain so- 
lution of the system S (2.7) (s o is the volume fiber content corresponding to Y0) for which 
the problem (2.9), (2.6), and (2.8) is solvable. The inclusion of s among the_variables re- 
sults in the_problem (2.9), (2.6) and (2.8) with right side of (2.9) equal to y0s0/s. The 
points L = {y0s0/s:s e [so, 0)} form a ray. In conformity with Sec. a) of Proposition 4 it 
is sufficient to find the point of intersection of the ray L with the convex set F which 
will yield the desired value of s. This is a standard convex programming problem. 

Example i. Let it be required to create a composite with the average stiffnesses 

ai111 = 0.5"i011Pa, a2222 = 0"2"i011Pa from a fiber with the Young's modulus E = 1.25"1011 
Pa for a volume fiber content of s = 0.8. There are no constraints on the stacking angles 
~ = [0, ~]. Symmetric stacking schemes of the type {___T=} are used. The arc 

F = {(cosi% sin4T) : ~ ~ [0, ~]} = {(~, (t _~f~)2):  ~ = cos4~ ~ [0, t ] }  

i s  r e p r e s e n t e d  in  F i g .  1. D i s p l a y e d  t h e r e  i s  i t s  convex  h u l l  c o n v r .  The s p l u t i o n  o f  t h e  
sy s t em S in  t h e  c a s e  unde r  c o n s i d e r a t i o n  i s  y~ = 0 . 5 ,  Y2 = 0 . 2 .  The p o i n t  y b e l o n g s  t o  
c o n v r .  T h e r e f o r e ,  t h e  d e s i g n  p rob lem i s  s o l v a b l e .  There  a r e  i n f i n i t e l y  many d e s i g n s  t o  
c r e a t e  t h e  c o m p o s i t e .  For  i n s t a n c e ,  t h e  p o i n t  y can be o b t a i n e d  as a convex c o m b i n a t i o n  o f  

t h e  p o i n t s  A and D. The s t a c k i n g  a n g l e s  o f  t h e  f i b e r  l a y e r s  a r e  4 - ~  = + a r c c o s 0  = 44490~ and 
4 

4 - ~ 4 - a r c c o s ~  0~0.58 ~ 4-3t ~ ( s i n c e  ~l = 0, n2 = 0 . 5 8 ,  see  F i g .  1 ) .  The s p e c i f i c  f i b e r  con-  
t e n t s  X1 + Xs = [AY[/[AD[ ~ 0 . 1 5 ,  X2 + ~ z 0 .85  a r e  d i v i d e d  e v e n l y  be tween  t h e  f i b e r  l a y e r s  
w i t h  s t a c k i n g  a n g l e s  4-~=. The s t a c k i n g  scheme p r e s e n t e d  s o l v e s  t h e  d e s i g n  p rob lem when 
u t i l i z i n g  t h e  g r e a t e s t  p o s s i b l e  f i b e r  s t a c k i n g  a n g l e s  (a  q u e s t i o n  t h a t  p l a y s  an i m p o r t a n t  
p a r t  when f a b r i c a t i n g  t h e  c o m p o s i t e  by w i n d i n g ) .  

Le t  us s o l v e  t h e  p rob lem o f  c r e a t i n g  t h e  same c o m p o s i t e  when u t i l i z i n g  a min imal  f i b e r  
volume.  The r a y  i s  L = { ( 0 . 5 ;  0 . 2 ) 0 . 8 / s :  s e [ 0 . 8 ;  0 ) } ,  s ee  F i g .  1. The p o i n t  B in  F i g .  1 
c o r r e s p o n d s  t o  t h e  min imal  v a l u e  o f  s f o r  which  t h e  p rob lem ( 2 . 9 ) ,  ( 2 . 5 ) ,  and ( 2 . 8 )  i s  s o l v a -  
b l e .  We now f i n d  -----~ =44490 ~ , 4-% = 0 ,  ~ + % a ~ 0 , 2 5 ,  t e + t s  The f i b e r  volume c o n t e n t  
is s = 0.55. 

i. 

DESIGN OF FIBROUS COMPOSITES WITH GIVEN STRAIN-STRENGTH 
CHARACTERISTICS 

Is the problem (2.9), (2.6), and (2.8) with the condition 

M ~ max {/1 (Tu, e~j), /2 (T~, T~+I, eij), /b (~ ,  e~)} ~ o ( 2 . 1 0 )  
~ E Z  

s o l v a b l e  (o = 1 ) .  

2. I f  s o l v a b l e ,  t h e n  i n d i c a t e  t h e  s e t  o f  i t s  s o l u t i o n s .  

The methods  o f  s o l v i n g  t h e  f o r m u l a t e d  p rob lem a r e  based  on t h e  r e s u l t s  p r e s e n t e d  above .  
Le t  us  c o n s i d e r  t h e  c a s e  when t h e  f i b e r  s t a c k i n g  a n g l e s  t a k e  on a f i n i t e  number o f  v a l u e s  
[~]~I" Let us introduce the set (o = i) 

m 

I~ (% ~, e@ ~ ~}; 
(2.11) 
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~N(o) = { ~  {~}~=i: /~(~, eii)~< o}. ( 2 . 1 2 )  

The p e r i o d  o f  t h e  c o m p o s i t e  c o n f i g u r a t i o n  c o n t a i n s  n o t  more  t h a n  m b o n d i n g  f i b e r  l a y e r s  
o f  d i f f e r e n t  o r i e n t a t i o n .  Each l a y e r  i s  c h a r a c t e r i z e d  by a s t a c k i n g  a n g l e  ~ and t__he s p e -  
c i f i c  f i b e r  c o n t e n t  X~ w h i l e  t h e  whole  s t r u c t u r e  i s  c h a r a c t e r i z e d  by t h e  v e c t o r s  9 = (~i . . . . .  

9m), ~ = (El . . . . .  g~). The v e c t o r s  ~ ,  X e R m (X~ = 0 c o r r e s p o n d s  t o  a b s e n c e  o f  a l a y e r ) .  L e t  
us  n o t e  t h a t  t h e  i n d i c e s  u in  ~ and y in  ~v a r e  p o s s i b l e  v a l u e s  o f  t h e  s t a c k i n g  a n g l e s  and 
a r e  d i f f e r e n t .  T~e a n g l e s  9~ can  t a k e  on any  v a l u e s  f r o m  t h e  s e t  {~}~=l w h i l e  X~ e q u a l  
z e r o  (when t h e  g i v e n  s t a c k i n g  i s  n o t  u t i l i z e d ) .  

L e t  us  ex am i ne  two p h y s i c a l l y  a d j a c e n t  bond ing  l a y e r s  (we g i v e  them t h e  s u b s c r i p t s  ~, 
$ ) .  The v e c t o r  ~ in  t h e  p a r t s  c o r r e s p o n d i n g  t o  t h e s e  l a y e r s  i s  X = ( . . . .  X~, 0 . . . . .  0,  
Xg . . . .  ) .  The s t r e n g t h  c o n d i t i o n s  ( 2 . 1 1 )  and ( 2 . 1 2 )  a r e  s a t i s f i e d  i f  and o n l y  i f  t h e  a d j a -  
c e n t  stacking angles are 

(~, r ~ (~) n ~(~). (2.13) 
Therefore, it is necessary to obtain an algorithm for constructing the bonding schemes X, ~' 
for which condition (2.13) is satisfied for adjacent (i.e., separated by zeroes in writing 
X) coordinates of the vector ~. 

To obtain the algorithm it is sufficient to indicate how by having the vector fragment 
(Xz .... , %~),(~i,-.., 9z) ,• < m satisfying (2.13), to supplement it by the stacking angle 
9~ {gv}~=i corresponding to the condition: 

i f  ~.+~ ~ O, t~e~ (~., ~) ~ ~=(~) ~ ~(~), 
if ~+z = O, then ~ is arbitrary. 

One of the possible algorithms for the solution of the last problem is (• enumerates the 
steps of the algorithm): i. We set z = 1 and select an arbitrary integer R ! m. i.i. We 
select an arbitrary point (x, y)~ q7=(o) N ~ 1.2. We set 91 : x. 

2. Among the points of the form (~• g) we seek those belonging to ~/72(o ) n q~(o). If 
there aren't any, stop. If there are, we set ~,+i ~ y and • : • + i. If • = R, stop (we 
set ~n+i -- -- 9~ : 0) if x < R, [epeat step 2. The number R has the meaning of the number 
of nonzero elements in the vector ~. By variating the selection we obtain different vectors 
9,%. 

The arrangement of the coordinates in the vector ~ obtained is arbitrary. Let us order 
~m ym 

its coordinates in the same order as in {9 ]v=i- For instance, let {T }v=i be arranged in 

increasing order. Let N denote the commutation operator that arranges the coordinates of ~p 
in increasing order: (N~)~...~(N~) m. We act on the vector X with the same operator. We 
satisfy condition (2.10) by application of the algorithm. It is still required to satisfy 
(2.9), (2.8), and (2.5). By virtue of Proposition 2 this condition is equivalent to the fol- 

lowing: N~ e A(y) where A(y) is given by (1.6). Let us note that the conditions on N~ oc- 

curring here reduce just to the fact that zeroes are at definite NX sites. 

Let v e R m, we define the vector sgnv (the signature of v) by it according to the rule: 

(sgn v)i = 0 if v i = 0, (sgn v)i = 1 if v i # 0. Let us write sgn v e sgn 0 if (sgn w)i = 

1 Vi = 1 ..... m follows from (sgn v)i = I. 

Therefore, we must confirm the embedding N] ~sgnX for a certain ~ e A(y). Since the 

sum of the numbers Xe ~ 0 equals i, then this condition is equivalent to X sen NX = 1 for a 

certain ~ e A(y). Substituting X here in terms of the simplicial solution (see Proposition 
2), we obtain 

E ~tn (s~ (g ) sgn  N~, - -  t )  = 0 

for a certain set {~ar) } .  Since 

i then 
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p~l(sn(y) s g n  N ~  - - i )  = 0 f o r  a l l  ~] = t ,  . . . ,  M .  

Therefore, the question is reduced to a question about the existence of simplicial solutions 
for which 

,~n(Y) sgn I% -- i (2.14) 

M 

(since the DN cannot vanish simultaneously because ~ u n = I ). Confirmation of the latter 

condition is easily realized in practice because of the finiteness of the number of simpli- 
cial solutions. 

In other words, the procedure for solving the design problem consists of initiating dif- 
ferent bonding schemes satisfying (2.11) and (2.12) by the algorithm until we find the bond- 
ing scheme satisfying (2.14). Afterwards, the action can understandably be continued in 
order to find other schemes also. 

DESIGN OF A MAXIMAL STRENGTH COMPOSITE 

We assumed o = 1 above [see (2.11) and (2.12)]. According to the definition, o is the 
value of the maximum in (2.10): M = o. Correspondingly, M = o for o S 1 has the physical 
meaning of the safety factor (indicating how much the values of the strength criterion M 
"are removed" from the limit value equal to one). 

Solution of the problem M + min upon satisfaction of the conditions (2.9), (2.8), (2.5) 
is performed on the basis of the algorithm described above. Only o in the definitions (2.11) 
and (2.12) is not taken equal to 1 but in the form of a parameter increasing from 0 to i, 
and the minimal value of o is sought for which the problem (2.9), (2.8), (2.5), and (2.10) 
is solvable. Since the change in the sets (2.11) and (2.12) occurs discretely as o grows 
from 0 to i for a finite number of stacking angle values, then the problem of finding the o 
mentioned becomes practically fully solvable (an analogous case is examined in [16]). 

STRUCTURE DESIGN 

Composite technologies combine, in a natural manner, the possibilities of material and 
structure design (structures are understood to be bodies with distributed mechanical charac- 
teristics). Control of a composite microstructure permits obtaining, in principle, a body 

ijk~(~ ) - with a given average characteristic distribution, elastic, say, a , x e Q (Q is the 
domain occupied by the structure). 

How to solve the problem in practice? This can be done on the basis of the methods 
elucidated. Let us take the relationships (1.1) or (2.1), let us compile the system S and 

solve it. The solution will depend on x e Q as on a parameter. Afterwards, we solve the 

problem (1.4) [or (2.9)] with the right side y �9 Y(x). We obtain the desired answer, a 
local composite configuration at a given point of the structure. The possibility of dis- 

cretization of the parameter x �9 Q, as is necessary for practical solution of the problem, 

follows from Proposition 3 [under the condition Y(x) �9 C(Q)]. 

Example 2. Let it be required to fabricate a material with the following stiffness 

distribution: allll = (0"25-0-125XI) 'I011Pa, a2222 = 0.25"1011Pa, where xl �9 [0, i]. Let 

a fiber with the Young's modulus E = 1.25.1011Pa (fiberglass) be used. Symmetric bonding 
schemes of the type {q-~=} are applied. 

The solution of the system S for s o = 1 (physically not realizable) is y0(xl) = (0.2 - 
0.1xl; 0.2) to which the ray L(x l) = {(i/s)(0.2 - 0.1xl; 0.2): s �9 [i, 0)} corresponds. 
Let us set ~ = [45 ~ 90~ In the case under consideration F = {(D, (i _ ~)2): ~ �9 [0, 
cos445~ [Fig. 2, rays L(x I) are displayed there]. As is seen, the problem is solvable 
since L(x I) n conv F ~ ~ for all x I �9 [0, i], the solutions are not identical. The continu- 

ity condition for aijks [and Y(x)] was imposed above but in our case it retains the mul- 

tipl~city of the solutions which is understandably a disadvantage and affords freedom in the 
selection of the technology for realization of the design. Without wishing to make the dem- 
onstration solution awkward, we extract the unique solution by requiring that the fiber vol- 
ume content be minimal. Geometrically this means that points of the segment [c, d] are con- 
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0 q 

90 

Fig. 2 Fig. 3 

sidered. We find that the fiber volume content in the design is 

s(xl) = 0 .8 - -0 .3x ,  

A f t e r w a r d s  we s o l v e  t h e  p r o b l e m  ( 2 . 9 ) .  ( 2 . 6 ) ,  ( 2 . 8 )  w i t h  t h e  r i g h t  s i d e  ( 1 / s ( x z ) ) y 0 ( x l ) :  
t h e  s t a c k i n g  a n g l e s  a r e  •  ~-90~ ~T2(xl)------~45 ~ t h e  s p e c i f i c  f i b e r  c o n t e n t  in  t h e  bond-  
ing  l a y e r s  i s  ~ 1 ( x l )  + k 3 ( x z )  = 0 . 2 0 5 x l  and ~ 2 ( x l )  + k 4 ( x z )  = 1 - 0 .205  xz ( t h e  s p e c i f i c  con -  
t e n t s  a r e  d i v i d e d  e q u a l l y  be t ween  l a y e r s  w i t h  a n g l e s  •  

The f i b e r  vo lume  c o n t e n t s  in  t h e  bond ing  f a m i l i e s  a r e  ~ l ( x l ) s ( x l )  = 0 . 2 0 5 x 1 ( 0 . 8  -- 
0.3xl), 12(xl)s(xl) = (i - 0.205xi)(0.8 - 0.3xl). 

The required distribution of the fiber stacking density achieved by controlling the 
stacking intensity is represented in Fig. 3 (families with stacking angles ~i = 90 and @3 = 
45 ~ are represented). 

ELECTRONIC COMPUTER APPLICATION TO SOLVE DESIGN PROBLEMS 

The low dimensionality of the appropriate problem about convex combinations is used 
substantially to solve the design problem in the examples presented of the graphical solu- 
tion. In cases occurring in practice the dimensionality [number of equations in (1.4)] is 
on the order of 10. In the case of fibrous composites the dimensionality is 4 and higher 
(because of the introduction of additional variables; see later). The problem of convex 
combinations is a typical convex analysis problem for which the ineffectiveness of direct 
methods of solution is characteristic in connection with the very rapid growth of the volume 
of calculations as the dimensionality of the problem increases. To obtain particular solu- 
tions of (1.4) or (2.9), (2.6), (2.8) the simplex method turns out to be effective. An al- 
gorithm is proposed in [22] for the construction of the general solution A(y) based on se- 
quential satisfaction of the equations in the problem on convex combinations (based on con- 
structing a set of simplicial solutions of the one-dimensional problem at each step, as is 
realized explicitly, and by making the calculation process purposeful, affords a possibility 
of performing computations for the number of equations that occurs in practice). The algo- 
rithm is realized in the form of programs for electronic computers that display their oper- 
ability on model problems [23, 24]. 

UTILIZATION OF DIFFERENT SPECIES OF FIBERS 
(HYBRID COMPOSITES) 

The functionals RI(~) ..... B4(~), YI~), Y~(~) acquire the form 

= 2 i; E0 o ,, o;oo0 
6=1 o:=1 

= 

6=i ~=i 

= c, 

where s* is the number of species of fibers being utilized, and ~6 is the specific content 
(referred to s) of 6-th species fiber in a fiber layer with stacking angle ~. The function- 
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als R,(~),..., Ra~ ) and J1(~), Y2~) here become independent. The problem dimensionality grows 
to six. The solvability condition is: the solution y of the system S belongs to the convex 
hull of the set 

r = { x  ~ R ~ :  x~ = E c o s  4 q~ . . . . .  x5 = i5 c o s  2 qo . . . . .  

~ r (E, ~) ~ ((E~, ~)}~*~}. 

Growth of the dimensionality of the problem and the set F broadens the class of possible 
properties of the composites. 

3. DESIGN OF PLATES. LAMINAR PLATES 

The methods developed in [25] (see also the bibliography in [26]) permit explicit ex- 
pressions to be obtained for the stiffnesses of laminar plates and formulation of the prob- 
lem of designing laminar plates with given stiffnesses. In the case under consideration an 
equation occurs of the form 

1 

= (3.1) 

0 

A description is given in [27] for the set of possible values of the average characteristics 
of laminar plates (in the set of materials with nonnegative mechanical characteristics), 
methods of numerical solution of (3.1) are discussed in [27, 28], and examples are examined. 
Let us note that the problem reduces to that considered in Sec. 2 for a large quantity of 
layers, see [29]. 

FIBROUS PLATES 

A number of computations is carried out in [30] for the local stresses in a plate of 
fibrous configuration that permit giving an estimate of the stresses in the binder, and val- 
ues of the average stiffnesses are presented. In conjunction with [31] this permits formula- 
tion of the design problem. 

On the whole, a study of the methods of solving problems of designing composite plates 
with given characteristics has only started. The appearance of the argument y in the func- 
tion f(u, y) in this case does not hinder application of the methods developed above but 
sharply raises the dimensionality of the problems for a numerical computation. 

LAMINAR MEMBRANES, COATINGS, ETC. 

The characteristics of laminar coatings and partitions (see [32, 33]) are given, as a 
rule, in the form of certain kinds of means, which permit s utilization of the methods eluci- 
dated for their design. 
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